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Abstract

The seismic resilience of a structure has been evaluated using peak ground acceleration
(PGA). Ground motion parameters such as source characteristics, local site conditions are
used to forecast the PGA of the ground motion. This paper aims to develop an Artifi-
cial Neural Network (ANN) based model to predict the PGA. Here, hypocentral distance
(Rhypo), shear wave velocity (Vs30), and moment magnitude (Mw), are used as input param-
eters. The model uses 12,706 ground motion recordings from 283 earthquakes from the
revised NGA-West2 database supplied by Pacific Engineering Research Centre. Among
the whole data, 70% of the data is set for training, 15% for validation, and 15% for testing
the network. The R value derived from the testing dataset is 0.952, indicating the excellent
performance of a network. An extensive parametric study is conducted with the PGA val-
ues, and the results indicate that the PGA increases with the magnitude and decreases with
the hypocentral distance. The predicted PGA values from the present study are compara-
ble with those from the existing relationships in the global database. The generated ANN
model is further verified by comparing the predicted and recorded PGA values of an actual
recorded event.

1 INTRODUCTION

An important research topic for seismic hazard analysis is
the prediction of ground motion intensity measures (IMs) in
terms of distance, magnitude, and other factors utilizing atten-
uation relationships [1]. For a particular site classification, the
most typically mapped ground motion IMs are peak ground
velocity (PGV), peak ground acceleration (PGA), and spectral
acceleration (SA). These calculations are known as attenuation
relationships, and they express ground motion as a function of
distance and magnitude, as well as other variables like faulting
type [2]. In the past, such relationships have been developed
for numerous locations of the world [3, 4, 13–18, 5–12]. Most
of these studies use regression analysis. Regression analysis
is not effective in extracting the nonlinear behaviour in the
ground motion database [19]. This issue can be solved by
using machine learning techniques to establish a ground motion
prediction equation. Machine learning techniques can capture
the non-linear behaviour present in the data.
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Few studies have used Artificial Neural Networks to pre-
dict the ground motion value. The peak ground acceleration of
the Taiwan region was estimated by using the back-propagation
neural network model [20]. Peak ground motion parameters
like PGA, PGV were evaluated for Europe region by utilizing
the Artificial Neural Networks with the limited ground motion
data [21]. Neural Networks were used to predict the earth-
quakes with higher magnitudes in Tokyo [22]. Feed-Forward
Back Propagation algorithm was utilized to determine the PGA
in north western Turkey [23]. Deep Neural Networks were
utilized to generate the Ground Motion Model (GMM) for
the Legnica-Głogów Copper District in Poland [24]. Artificial
neural networks were used to establish an attenuation relation-
ship for PGA estimate utilizing Indian strong-motion data [25].
Very recently, a region-specific Neural-Network based ground
motion prediction equation was generated [26]. Empirical
ground motion models were developed for Southern Califor-
nia region for small magnitude earthquakes using feed-forward
neural networks [27]. These studies suggested that Neural
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Network approach to ground motion prediction equation could
be an efficient tool. And, from the above studies, it can be
inferred that all the ground motion prediction equations were
region specific and developed using limited ground motion
data. Hence, there is a scope to develop a generalized ground
motion prediction equation by considering the vast global
database.

In this regard, this study utilizes the Artificial Neural Net-
works for ground motion prediction using the global database.
ANN is a strong tool for addressing complex issues, and it is
particularly effective for civil engineering challenges [28–32].
Here, the prediction equation was built utilizing 12,706 data
points obtained from 283 earthquakes from the revised NGA-
West2 database using neural networks. Mw , Rhypo, and Vs30
are selected as the inputs for this study. The output variable
considered is Peak Ground Acceleration (PGA). Sensitivity
analysis is conducted to determine the essential inputs and
their relative relevance on the model output (PGA). Finally,
the developed ANN based ground motion prediction model
is compared with the existing prediction equations. Further,
the model is validated by comparing the predicted ground
motion values with the actual recorded data. The advantages
of modelling of ANN over that of statistical linear and non-
linear regression are: (i) the functional design expression or
its form need not be assumed a priori as in the case of
non-linear regression, (ii) the degree of non-linearity of inde-
pendent parameters also need not be assumed a priori, (iii)
flexibility of varying the network architecture easily for accurate
modelling and prediction which is independent of functional
approximation, and (iv) the ease of coming up with generalized
design expression for the chosen, most accurate simulation and
prediction.

The following is the structure of the paper: Section 2 shows
the research methodology. Section 3 describes the earthquake
data. The specifics of the Artificial Neural Network and the
outcomes of the ANN model are presented in Section 4. The
procedure for generating the prediction equation using ANN
is presented in Section 5. Sections 6 and 7 show the paramet-
ric and sensitivity analysis, respectively. Section 8 offers the
validation of predictive relation. In the final section, simple
conclusions are made (i.e., Section 9).

2 RESEARCH METHODOLOGY

The relevance of the research is that it employs the machine
learning (ML) technique known as Artificial Neural Networks
(ANNs) for the prediction and comparison of PGA of ground
motions with the conventional approach. The prediction model
was created using the optimized AI architecture and func-
tionalities. The NGA-West2 database was used to get the
strong-motion data. The input parameters include hypocen-
tral distance (Rhypo), shear wave velocity (Vs30), and moment
magnitude (Mw). The output variable is the Peak Ground
Acceleration. The dataset is separated into three parts: train-
ing, validation, and testing. The prediction equation is created
by selecting the best ANN model architecture and dataset.

The parametric research is carried out using predicted PGA
values for various Rhypo, Vs30, and Mw combinations. A sensi-
tivity analysis was performed to identify the critical parameters
and their relative importance on predicted model outputs.
Finally, the constructed prediction equation is verified by
comparing predicted output values to those obtained from ear-
lier developed equations. Figure 1 depicts the investigation’s
methodology.

3 EARTHQUAKE DATA

Data for this study was collected from the updated PEER-
NGA-West2 database available in https://peer.berkeley.edu/
research/nga-west-2. The earthquake data consists of 12,706
ground motion recordings from 283 earthquake events across
the globe. The hypocentral distance (Rhypo), average shear wave
velocity (Vs30) over the top 30 m of soil, and moment magni-
tude (Mw) are considered as inputs for generating the model.
Moment magnitude represents the source characteristics of
earthquake. Hypocentral distance represents the distance from
the source to the site. Because this measure is based on the
earthquake’s epicentre and focal depth, it can offer a more
precise depiction of the source-to-site distance [19, 33, 34].

Figure 2 shows the magnitude variation as a function of
hypocentral distance, illustrating the various magnitudes and the
distribution of hypocentral distance of events. The variation
between PGA and hypocentral distance is shown in Figure 3.
The earthquake data used in the current study includes data
from both rock sites and soil sites.

4 ARTIFICIAL NEURAL NETWORKS

To forecast the Peak Ground Acceleration (PGA), a Neural
Network based prediction relationship has been generated. Pre-
vious research has shown that such relationships can be useful,
and numerous studies have found identical ANN-based predic-
tion correlations concerning various problems [35–38]. In the
MATLAB R2019b environment, a feed-forward neural network
was built. Transfer functions, also known as activation functions
and output functions, are the functions that control the input-
output behaviour. Linear and Tan-sigmoid transfer functions
were chosen between hidden-output nodes and input-hidden
nodes, respectively. The Levenberg–Marquardt (LM) method
was used to train the network. Kenneth Levenberg and Donald
Marquardt created the Levenberg–Marquardt method to offer
numerical solutions to non-linear function issues. This neural
network training approach is quick and offers consistent con-
vergence [39]. In proportions of 70%, 15%, and 15%, the data
is randomly divided into training, validation, and testing. For this
phase, the present ANN model finds this percentage to be opti-
mum. The variables should be normalised between −1.0 and
1.0 before being fed into the ANN model. In general, normali-
sation is done to guarantee that all variables are given the same
amount of importance [40]. The following formula is used to
calculate the normalised value of x, with xmin andxmax, being
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FIGURE 1 A framework showing research methodology.

FIGURE 2 Variation of magnitude with hypocentral distance.

the minimum and maximum values, respectively:

Normalized value, xn =
2 (x − xmin )

(xmax − xmin )
− 1 (1)

To ensure that the ANN model performs optimally, an opti-
mal number of hidden nodes must be used. The ideal number of
hidden nodes is regarded to be between 1 and (2j+1), where j is
the number of inputs that generates the lowest mean squared
error (MSE) [41]. Alternatively, a trial-and-error method can
be used to determine the number of hidden nodes which is

FIGURE 3 Variation of peak ground acceleration (PGA) with
hypocentral distance.

a tedious task. The average difference between values pre-
dicted by a regression model and the actual value observed
is measured by the term “mean square error.” It is deter-
mined by taking the average of all squared differences over the
full dataset. Since it better reflects how well our predictions
correlate with reality, MSE is useful for regression situations.
Hence, MSE is chosen as a parameter to select optimum num-
ber of hidden nodes. Here, the input parameters are four
(magnitude, hypocentral distance, log10-scaled hypocentral dis-
tance, and log10-scaled shear wave velocity). ANN models were
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FIGURE 4 M ean squared error (MSE) versus hidden nodes.

FIGURE 5 Architecture of the developed artificial neural network (ANN)
model.

generated with hidden nodes varying from 1 to 9. The model
with the lowest error was selected, and the nodes matching
to that number was deemed optimal as shown in Figure 4,
which is seven in this case. Thus, by selecting four hid-
den nodes, the highest performing and optimal ANN model
was found, and the ANN model was named ANN 4-7-1 in
this study. Figure 5 depicts the model’s architecture to aid
comprehension. As seen in Figure 5, the log-scaled ground
motion parameter (log10(PGA)) is predicted using the magni-
tude (Mw), hypocentral distance (Rhypo), log10-scaled shear wave
velocity (log10(Vs30)), and log10-scaled hypocentral distance
(log10(Rhypo)). This functional form was selected to approx-
imate the often-found correlations between ground motion
parameters and predictor variables [42].

The performance assessment functions used in this study
to test the ANN models’ predictive accuracy are Mean Abso-
lute Error (MAE), Coefficient of Correlation (R), and Mean
Squared Error (MSE). The model’s performance is summarised
in Table 1. The functions for measuring performance are listed

TABLE 1 Performance of ANN-4-7-1

Data MSE MAE R

Training 0.0057 0.0421 0.948

Testing 0.0046 0.0422 0.952

below:

R =

√√√√∑
Y 2

m −
∑

(Ym −Yp)2∑
Y 2

m

(2)

MSE =

∑
(Ym −Yp)2

N
(3)

MAE =

∑|Ym −Yp|
N

(4)

where Ym and Yp are the actual and predicted values.
The R-value is used to assess the fit between predicted and

actual values as well as their relative correlation. As a result, it
must therefore be as high as possible. MAE and MSE should
be kept to a minimum [43]. The complete correlation between
the actual and anticipated PGA is shown in Figure 6. As a result,
the model explicitly has significant predictive capacity within the
data range used to generate it.

5 PREDICTIVE EXPRESSIONS USING
ANN

In this work, the model equation for log10(PGA) was derived
using the ANN-4-7-1 model. The following equation is used
to produce a predictive relationship utilising the weights of
an ANN model by linking the input and output parameters
[44]:

Yn = fo

{
bo +

h∑
k=1

[
wk ∗ fh

(
bhk +

m∑
i=1

wikXni

)]}
(5)

where wk =weight connection between hidden layer neuron
(k) and single output neuron; bhk = kth hidden neuron bias;
wik =weight between the input and hidden layer neuron (k);
bo =bias of the output layer; Xni =input parameter; fo =transfer
function of the output layer (Linear function); and fh =transfer
function of the hidden layer (Tan-sigmoid).

The biases and weights listed in Table 2 were inserted into
Equation (5) to generate the log10(PGA) prediction equation.
The bias weights as shown in Table 2 make the ANN model
more general and robust. Using the input variables, the formulas
in Equations (6)–(15) are used to get the normalised value of
log-scaled ground motion parameter (log10(PGA)).

a = −1.5974 × MW − 0.9285 × Rhypo + 0.2424 × log10(Rhypo)

− 1.3628 × log10
(Vs30) + 1.7077 (6)
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FIGURE 6 Comparison of actual PGA with the predicted PGA from the developed ANN model.

TABLE 2 Biases and weights of the ANN 4-7-1

Input-hidden weight Bias

Hidden node MW Rhypo log10(Rhypo) log10(Vs30)

Hidden-

output

weight

log10(PGA) Hidden Output

1 −1.5974 −0.9285 0.2424 −1.3628 −0.1262 1.7077

2 0.1793 −0.0274 −2.3119 −0.6098 0.6633 2.1593 0.5310

3 5.7221 −1.9613 −0.7376 −0.3412 0.0830 −3.1907

4 −2.7220 0.3865 0.5373 −0.0378 −0.3392 −1.2858

5 0.6528 −1.1689 1.1899 0.3036 −0.6712 1.0580

6 −0.9375 2.9341 −0.5128 0.9096 0.0911 0.2591

7 −0.5685 1.9251 4.4336 0.8566 −0.0873 1.9032

b = 0.1793 × MW − 0.0274 × Rhypo − 2.3119 × log10(Rhypo)

− 0.6098 × log10
(Vs30) + 2.1593 (7)

c = 5.7221 × MW − 1.9613 × Rhypo − 0.7376 × log10(Rhypo)

− 0.3412 × log10(Vs30) − 3.1907 (8)

d = −2.7220 × MW + 0.3865 × Rhypo + 0.5373 × log10(Rhypo)

− 0.0378 × log10(Vs30) − 1.2858 (9)

e = 0.6528 × MW − 1.1689 × Rhypo + 1.1899 × log10(Rhypo)

+ 0.3036 × log10(Vs30) + 1.0580 (10)
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TABLE 3 Limit of parameters used in this study

Input parameters

Output

parameter

MW Rhypo log
10

(Rhypo) log
10

(Vs30) log
10

(PGA)

Max 7.90 502.41 2.70 3.32 0.25

Min 3.20 2.06 0.31 1.95 −6.44

f = −0.9375 × MW + 2.9341 × Rhypo − 0.5128 × log10(Rhypo)

+ 0.9096 × log10(Vs30) + 0.2591 (11)

g = −0.5685 × MW + 1.9251 × Rhypo + 4.4336 × log10(Rhypo)

+ 0.8566 × log10(Vs30) + 1.9032 (12)

x = −0.1262 × tanh(a) + 0.6633 × tanh(b) + 0.0830 × tanh(c )

− 0.3392 × tanh(d ) − 0.6712 × tanh(e) + 0.0911 × tanh( f )

− 0.0873 × tanh(g) + 0.5310 (13)

Normalized log − scaled PGA, log10(PGA)
normalized

= x (14)

The normalised log-scaled ground motion parameter
(log10(PGA)

normalized
) must be denormalized. Equation (15)

yields the denormalized value of the log-scaled ground motion
parameter (log10(PGA)).

log10(PGA)0.5(log10(PGA)
normalized

+ 1)(log10(PGA)
max

− log10(PGA)
min

) + log10(PGA)
min

(15)

Only employ the log-scaled ground motion parameter pre-
diction equation (Equation 15) in the dataset range where the
ANN model was trained. The maximum and minimum input
parameter limits are shown in Table 3.

Further, the effectiveness of the prediction equation should
be assessed. This can be done by examining the residuals. The
difference between the observed ground-motion value and the
predicted value is referred to as residual in this study.

Figure 7 shows the distribution of residuals with respect to
hypocentral distance, magnitude, and shear wave velocity. From
the figure, it can be observed that the residuals show some ran-
dom variability, but most of the average residuals are close to
zero. The residual does not follow any trend with regard to
the inputs as observed from this figure. Overall, the proposed
model can predict ground motion values with high accuracy and
is unaffected by any of the input variables.

6 PARAMETRIC ANALYSIS

The effectiveness of the neural network model in capturing
the physical phenomena exhibited by ground motion must
now be evaluated. This can be achieved by performing the

parametric analysis with the predicted PGA values for various
combinations of

MW , Rhypo, and VS30. Figure 8 shows the variation of PGA
with respect to hypocentral distance for different magnitudes
for VS30 = 760 m/sec. The distance parameter in this study is
the hypocentral distance. It stands for the distance between the
source and the location. This measurement can provide a more
accurate representation of the source-to-site distance since it is
based on the earthquake’s epicentre and focal depth. It can be
observed that the PGA value increases with the earthquake’s
magnitude. The variation of the ground motion at different
hypocentral distances with regard to magnitude can be seen in
Figure 9, and it can be observed that the value of PGA decreases
with respect to the distance parameter. From this figure, it
can be affirmed that the predicted PGA increases with the
magnitude and decreases with regard to the distance parameter.

The variation in ground motion values as a function of soil
class is shown in Figure 10. Five types of soil are considered in
this study based on shear wave velocity as per IBC [45]. The
considered Vs30 values are 1500 (A type), 1050 (B type), 525
(C type), 225 (D type), and 150 m/s (E type). The PGA value
increases with the magnitude for all soil types. It can also be seen
from the figure that the difference in the PGA value for a given
magnitude is negligible for all soil types at a smaller distance (
Rhypo= 10 km). The opposite behaviour can be observed at a
larger distance ( Rhypo= 150 km). When the soil type changes
from soft (E type) to hard (A type), the PGA value decreases
for all distances.

Overall, as demonstrated by the model’s PGA patterns, the
proposed model can capture the physical aspects of ground
motion in terms of magnitude scaling, type of soil, and attenua-
tion with respect to distance. As a result, for a given magnitude,
hypocentral distance, and type of soil, the current model can
generate reliable ground motion predictions.

7 SENSITIVITY ANALYSIS

A sensitivity analysis was carried out to find the essential param-
eters and their relative relevance on the model outputs. The
findings reveal that the network output varies depending on the
inputs, providing insight into the most sensitive parameters that
should be assessed more precisely. Here, the sensitivity analysis
was done using the Cosine Amplitude Method [46]. According
to this method, strength ratio between each input and output
variable has been calculated using the Equation (16).

Strength ratio =

∑
(Input × Output )√∑

(Input )2
×
∑

(Output )2
(16)

On the dataset, Equation (16) is applied, and a graph is dis-
played as shown in Figure 11. As demonstrated in Figure 11, the
Magnitude (Mw) and Hypocentral distance (Rhypo) are obviously
the most effective components in the ground motion prediction
model. The shear wave velocity (Vs30) has the least influence
on the prediction model when compared to magnitude and
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FIGURE 7 Distribution of residuals with respect to (a) Rhypo; (b) Mw ; (c) VS30.

FIGURE 8 Variation of predicted PGA for different magnitudes with
respect to hypocentral distance.

hypocentral distance. The order of relevance of input variables
is as follows, according to the Cosine amplitude method:

Moment Magnitude (Mw) > Hypocentral Distance (Rhypo) >
Shear Wave Velocity (Vs30)

8 VALIDATION OF ANN PREDICTIVE
RELATION

The new ground motion prediction equation may be used to
estimate ground motion for future earthquakes. However, the
new prediction equation must first be validated by compar-

FIGURE 9 Variation of predicted PGA for different distances with
respect to magnitude.

ing with previous equations using global database. For such
validation, the attenuation relationships developed by several
researchers [47–49] were compared to the current equation.
Figure 12 compares the variation of PGA produced by the past
attenuation relations with the new ANN based prediction equa-
tion for different magnitudes. It is clear from the figure that
the variation of PGA with the distance parameter from the
developed ANN based equation is following the same trend as
the known attenuation relationships. Because there are differ-
ences in input parameters evaluated, some deviations between
equations are permissible. Also, an attempt has been made in
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FIGURE 10 Variation of predicted PGA for different soil types with respect to magnitude.

FIGURE 11 Strength ratios of different input variables.

this study to compare the predicted PGA values with those
obtained from the existing model [50], which utilized the same
updated NGA-West 2 database. The model in this work used
the hypocentral distance, while the existing model considered
the Joyner-Boore distance as a distance parameter. For a mean-
ingful comparison, the hypocentral distance in the present study
is converted to Joyner-Boore (RJB) distance using a magnitude-
dependent conversion formula proposed in the study [51].
From Figure 13, it can be observed that the ANN model shows
good agreement with the existing model. The slight variation in
the PGA values is due to different input distance parameters.

In addition, the effectiveness of the new ANN-based equa-
tion in forecasting future events was tested in this study. In
order to accomplish so, it should be able to determine the
actual acceleration which was not included in the ANN model’s
training phase. Figure 14 depicts the actual and the predicted
data of Chamoli earthquake (1999) recorded at different sta-
tions with soil type as rock. As per NEHRP guidelines, the
shear wave velocity (Vs30) is taken as 760 m/s. Recorded data
from one more event with high magnitude was also used to
validate the new prediction equation. Figure 15 shows the
predicted PGAs of Hector Mine earthquake (1999) recorded
at different stations (stiff soil). There is no evidence of a
small hypocentral distance range in this earthquake’s dataset.
Figure 16 depicts the comparison between the actual recorded
and predicted PGA values for San Fernando (1971) earthquake
recorded at seven different stations with different soil profiles.
The actual recorded data was taken from the PEER NGA
database. It is clear that the newly constructed ANN-based
prediction equation matches the actual recorded data quite
well.

The residuals for the PGAs predicted using three different
relationships are produced for quantitative analysis. Figure 17
shows the residual plots estimated using the proposed ANN
model, existing models proposed by Boore DM et al. (2014)
and Shiuly et al. (2020). The proposed ANN model predicts the
ground motion value with lower residuals, as can be seen. This
clearly demonstrates the proposed ANN model’s ability to reli-
ably predict PGA values with far smaller residuals than existing
models.
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FIGURE 12 Variation of PGA obtained by different existing relationships and developed ANN based relationship with Vs30 = 760 m/s for different
magnitudes (a) Mw = 5; (b) Mw = 7.5.

FIGURE 13 Variation of PGA obtained by existing relationship and developed ANN model for NGA-West2 database for Vs30 = 760 m/s.

FIGURE 14 Recorded data of Chamoli earthquake (1999), versus PGA,
predicted using new equation.

FIGURE 15 Recorded data of Hector Mine earthquake (1999), versus
PGA, predicted using new equation.
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FIGURE 16 Recorded data of San Fernando earthquake (1971), versus
PGA, predicted using new equation.

FIGURE 17 Plot of residual between predicted and actual recorded
PGAs.

9 CONCLUSIONS

This goal of this work is to construct a prediction equation
for ground motion parameter by utilizing the global database.
The model is developed using 12,706 ground motion recordings
from 283 earthquakes from the revised NGA-West2 database.
Hypocentral distance (Rhypo), shear wave velocity (Vs30), and
moment magnitude (Mw), are considered as input parameters
for the model. Peak Ground Acceleration (PGA) is considered
as an output variable in the model development. The data in
this study is modelled using a feed-forward neural network.
The architecture of the ANN model (4-7-1) comprises of fully
interconnected 4 input nodes, 7 hidden nodes and 1 output
node. Using the trained weights and bias values, an ANN-based
ground motion predictive equation was developed. In addition,
the model was subjected to a sensitivity analysis.

The following are the conclusions drawn from this study:

1. The PGA from the prediction model increases with the
magnitude and decreases with regard to the distance
parameter.

2. The PGA value decreases as the soil type changes from soft
(E type) to hard (A type).

3. In the dataset range for which the neural network was
trained, the prediction equation can be employed, viz. 3.2
≤ Mw ≤ 7.9, 2.06 ≤ Rhypo ≤ 502.41, and 89.32 ≤ Vs30 ≤

2100.
4. From the sensitivity study, it was concluded that moment

magnitude and hypocentral distance are the most influential
parameters on the performance of the model.

5. The proposed ANN model was validated and compared by
determining its capacity to predict the recorded PGA of
an event not included in the development of the model as
precisely as feasible.

6. The residuals estimated using two existing models and the
proposed model are compared. The residuals of the pre-
dicted values using the proposed ANN based model are
significantly smaller.

7. The developed prediction equation may be utilized regard-
less of the location because the dataset used in this work
includes a wide range of distances, magnitudes, and soil
types.

This research demonstrates that an ANN-based technique
for PGA prediction may be used as an alternate way for creat-
ing attenuation models by carefully leveraging the vast data base
that has been collected throughout the world. The validity of
the model, as well as their results and conclusions, are restricted
to the database used in this study. In future research, the cur-
rent ANN-based prediction equation can be further modified
by including the fault mechanism, soil type, and focal depth as
new input variables.
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